生产厂家:浙江邦照电气有限公司厂家地址:浙江省乐清市经济开发区博通慧谷小微园张莉莉5.输出限流点调节模块具有无级限流功能!通过外部监控模块,模块的限流点在0~20A范围内可调!当输出电压在50Vdc~750Vdc之间时,模块的限流精度为±0!3A。6.输出电压调节通过外部监控模块,模块的输出电压可连续调整,调整范围为50Vdc~750Vdc,小调节步距为0.1Vdc!7.风扇控制模块内置处理器可根据模块的内部温度和模块的输出电流调节风扇的转速!
cm安装电缆,电缆应选择大于6平方或者AWG10#线,端子宜采用OT6-4,建议扭力为14kgf。cm充电模块安装到系统机柜之后,系统通电即可运行。使用环境1.过电压/安装类别:过电压类别Ⅱ!2.污染等级:污染等级Ⅱ。3.海拔高度:低于2000米,超过2000米需要降额使用。4.交流输入配电系统:TN或TT系统!5.严禁在搬运过程中扔摔产品.可多个模块并联安装达到更大电流,可集成逆变器或锂电储能或EV充电桩系统!
10.过温保护环境过温保护点为80℃。DC板温度大于85℃时,模块停止工作;当DC板温度低于75℃时,模块将自动恢复工作!11.内部母线故障保护当模块内部母线电压超出过/欠压保护点时,模块将自动关机,此时模块无输出.12.短路保护模块短路时保护关机,并上告“模块故障”给监控!13.后台通讯中断模块发生通讯中断,时间超过20S,模块关机保护,无电压输出.通讯恢复后,需要重新发开机指令才会开机!14.风扇故障保护风扇发生故障时,模块将产生风扇故障告警,此时模块关机,无电压输出.
3.输出恒功率控制额定输入电压时,模块允许输出功率为为7KW,模块输出电压与输出电流的关系说明:该模块采用两种工作模式:1)模块接收监控指令,是工作于32A模式或者16A模式(限功率点不同)。2)输出50V~500V和500~750V两段输出!在没有需求电压的情况下,开机默认工作在低压段模式,当模块实际输出高于525V,模块自动切换到高压段工作。当需求电压低于500V时,又自动切回到低压段模式工作.
内蒙古锂电系统电池充电器推荐
3.将风扇电源线插入风扇电源插座,将风扇吹风的方向对准机箱内部方向,装入新风扇。4.紧固面板风扇安装螺钉,合上机箱改版,打紧机箱螺钉.5.检验新风扇是否正常运转,如是,则表明风扇更换成功!充电模块的安装步骤如下:1.根据机柜的安装方式将挂耳装到机箱对应的位置上.2.慢慢将充电模块完全推入槽位或者固定到安装板!拧紧充电模块挂耳上的固定螺钉,将其固定在机柜上,挂耳固定螺丝采用M4,建议扭力为12kgf!
青海可并机电池充电器定做_逆变控制电池充电器价格-浙江邦照电气有限公司
8.输入过/欠压保护模块输入为单相交流电压,输入电压低于90Vac或者大于280Vac时,模块将停止工作、无输出!出现过压或者欠压告警时,模块会将告警信息上报给监控模块;当输入电压恢复到正常范围内,告警消失,同时模块恢复到正常工作状态!4充电模块BZA系列9.输出过压保护过压保护后需要人工干预方可开机!软件过压保护点可通过监控模块设置,设置范围为76Vdc~778Vdc,出厂默认值为778Vdc。人工干预方法:可以通过监控模块将模块复位,也可以交流断电后重新上电来进行模块复位。
2.慢慢将充电模块完全推入槽位或者固定到安装板。拧紧充电模块挂耳上的固定螺钉,将其固定在机柜上,挂耳固定螺丝采用M4,建议扭力为12kgf.cm安装电缆,电缆应选择大于6平方或者AWG10#线,端子宜采用OT6-4,建议扭力为14kgf。cm主要参数如下:风扇的更换方法如下:1.断电取下模块,用十字螺丝刀将固定机箱上壳的螺钉拆下,去掉机箱盖板,松掉面板上的风扇紧固螺钉,拔下灯板线缆插头。2.拔下风扇的电源线,取出故障风扇!
大型并网光伏电站具有逆变器和电池组串数量众多的特点。对于大型并网光伏电站,如何衡量逆变器和电池组串的整体运行水平一直是困扰业内人士的难题。离散率是反映测量数据离散程度的相对指标,由光伏智能化信息管理系统引入,首次用来评估逆变器和组串的整体运行水平。 离散率即离散系数,可由采集数据的标准差与平均值的比值来计算。光伏智能化信息管理系统通过计算统计时间(10:00-17:30)内每半小时采集数据的标准差和平均值,进而求出相应时刻点的离散率,然后对各时刻点离散率加权平均计算得出一天的离散率。离散率越小说明设备整体运行的一致性越好。一般情况下离散率范围在0~5%以内,如超过该范围,则需要查找引起设备离散率较大的原因,及时排除故障,保证设备稳定运行。 1.逆变器交流功率离散率评价逆变器运行水平 标准测试条件下,组件容量相同的逆变器交流输出功率时间序列应较为一致,但由于逆变器自身性能差异、发电单元设备故障、天气状况、通讯异常等原因,逆变器间交流输出功率会存在一定差异。因此,引入逆变器交流功率离散率衡量全站逆变器交流输出功率的差异程度,离散率越小,说明逆变器间输出功率时间序列曲线越集中,逆变器整体运行情况越稳定;离散率较大,则个别逆变器存在问题,需要查找异常逆变器。 在计算离散率时,应考虑天气因素对离散率的影响。对于多云天气,应查看电站内较长的一段时间逆变器的运行情况。由于天气影响时间是短暂的,如果逆变器离散率在统计时段内都持续偏大,则可以排除天气影响,定位到电站内设备故障或通讯故障。 对于输出功率较低的逆变器,需查询逆变器采集数据。若采集数据显示通讯异常,则应剔除通讯异常的逆变器,重新计算其余逆变器的输出功率离散率,用以判断逆变器的运行情况。若离散率在合理范围内,则说明通讯问题是影响电站正常运行的主要问题,否则可继续查看发电单元设备运行情况,分析是否由发电单元设备故障造成方阵输出功率较小,影响逆变器交流输出功率离散率。 对于存在多种逆变器型号的光伏电站,建议分型号计算逆变器离散率,这是由逆变器本身属性决定的。 2.组串电流离散率评价支路电流运行水平 将离散率概念引入组串电流中,通过组串电流离散率衡量逆变器所有支路的整体运行情况,离散率越小,各支路电流时间序列曲线越集中,发电情况越稳定;离散率较大,则认为个别支路存在问题,快速定位到电池组串支路,查找电流为0或偏低的支路。 当逆变器下组串支路较多时,可逐一分析每个汇流箱下所有支路的离散率指标,评价该汇流箱下所有支路的整体运行水平,准确定位电流为0或偏低的支路。 导致支路电流为0或电流偏低的原因较多,如杂草遮挡、接线盒烧毁、汇流箱烧毁等,运维人员应针对异常支路,进入现场进行故障排查,并重新计算故障排除后的组串电流离散率,判断已排除故障是否为导致离散率偏大的主要原因。(郭丹、刘佳、艾英枝、马月 撰稿)