浙江邦照电气有限公司太阳能离网发电系统一般是由太阳能电池板、蓄电池、太阳能充电控制器、离网正弦波逆变器等部件组成!太阳光照通过太阳能电池板转换为电能,通过控制器给蓄电池充电,再通过离网逆变器将蓄电池的直流电转化为交流电,供用电设备使用!邦照电气有限公司研发的各种应用场所的逆变电源,均采用进口第六代智能模块IPM高科技功率器件,使用DSP28335系列高度集成控制技术,数字化高可靠性电路设计,结构简单维护方便实现在线长年无故障运行!
此功能非常方便客户使用于不同的负载类型!7,采用SVPWM空间矢量算法,高转换效率、高瞬间功率及低无负载损耗转换效率可以到93%以上!8,双模式启动选择功能,通过液晶设置可以设置降压启动和变频启动两种方式!这样可以充分发挥逆变器的功率,再也不需要在带电机,感性负载时扩大逆变器的容量,给用户节省了费用.9,选配功能:RS485通讯,市电旁路功能,内置太阳能充电控制器,内置市电充电器,启动柴油发电机,集成锂电储能逆变充电功能于一体等.
通信设备用抽屉式逆变器_污水处理系统电源柜厂家-浙江邦照电气有限公司
我公司研发的各种应用场所的逆变电源,均采用进口第六代智能模块IPM高科技功率器件,使用DSP28335系列高度集成控制技术,数字化高可靠性电路设计,结构简单维护方便实现在线长年无故障运行!本公司逆变器均采用隔离变压器输出设计,输出的纯正弦波交流电源,使设备不受干扰.太阳能/风能离网发电系统一般是由太阳能电池板/风力发电机、蓄电池、太阳能充电控制器风力控制器、离网逆变器等部件组成!太阳光照/风力发电机通过太阳能电池板/风力发电机转换为电能,通过控制器给蓄电池充电,再通过离网逆变器将蓄电池的直流电转化为交流电,供用电设备使用。
哈尔滨AGV车载控制系统抽屉式逆变器哪家好_高防护船用电源柜供应厂家-浙江邦照电气有限公司
邦照电气BZP系列的逆变电源(PowerInverter),一般是指将低压的直流电转变成高压(或低压)交流电的装置,它可以用蓄电池或者太阳能光伏板,风力发电机等做电源,输出稳定的交流电!传统的逆变电源是采用直流电动机—交流发电机组来实现这种电能转换的,而现代的逆变电源多是通过功率半导体器件来实现电能转换的,又被称为静止变流器.其在体积、重量、变换效率、可靠性、电性能等方面的优越性都大大超过了传统的逆变装置。
如果您想咨询正弦波逆变器更多信息,请致电莉莉:18969760766;珍惜与每个对正弦波逆变器有需求的企业、个人 能有进一步的交流机会,欢迎各大企业、个人光临公司本部,浙江邦照电气有限公司详细地址:浙江省乐清市经济开发区滨海南四路66号博通慧谷13-2幢。
3,LCD液晶显示,可以显示输入直流电压,相电压,输出频率,相电流,市电旁路电压,输出电量KWH,时间,温度,故障显示!4,输入直流电压范围可以设置,例如过压点,过压恢复点,欠压点,欠压恢复点都可通过液晶屏来设置!此功功能方便可以增加或减少蓄电池,光伏组件灵活使用!5,输出纯正正弦波,它具有瞬态响应好小于50MS,波形失真小,输出电压稳定、逆变效率高6,输出频率可以自行设置,例如想控制电机转速设置为30HZ,逆变器就输出30HZ!
青海分相正弦波逆变器生产商
桂林在线式抽屉式逆变器推荐_高防护船用电源柜哪家好-浙江邦照电气有限公司
本公司逆变器均采用隔离变压器输出设计,输出的纯正弦波交流电源,使设备不受干扰.我公司拥有多种规格逆变电源的研发和生产能力!按不同的直流DC输入等级,可以分为:DC48V、DC96V、DC110V、DC120V、DC192V、DC220V、DC240V、DC300V、DC360V、DC492V,DC600V等!按不同的交流输出等级,可以分为:单相100V,120V,220V,240Vac二相110/220V,120/240V,240/480Vac三相208V,220V,380V,400V,415V,440V,460V,480V,525V,660Vac按不同的频率可以分为50HZ或60HZ按照安装地方可以分为:1,学校试验用项目2,光伏提灌站3,加油加气站4,酒厂,化工厂,海岛,5,矿井,潮湿的地方6,污水处理,沙漠治理等7,观光船,工程船,磕头机采油,高海拔农牧区按照安装方式分类:1,机架式,功率范围从3KW-12KW2,柜机,槽钢式3KW-500kW范围可定制3,防水,防爆型等[邦照电气BZP系列逆变器产品特点]1,采用三菱公司第六代PM智能模块,性能稳定,具有强大的保护功能,短路,过载,过温保护更加安全可靠,使用寿命可长达15年以上2,离网逆变器可以不接电池工作,节约了电池和控制器成本,带MPPT宽电压100-400V或200-500V或400-800V输入功能,利用太阳能!
对于优化太阳能系统的效率和可靠性而言,一种较新的手段是采用连接到每个太阳能板上的微型逆变器(micro-inverter)。为每块太阳能面板配备单独的微型逆变器使得系统可以适应不断变化的负荷和天气条件,从而能够为单块面板和整个系统提供最佳转换效率。 微型逆变器架构还可简化布线,这也就意味着更低的安装成本。通过使消费者的太阳能发电系统更有效率,系统“收回”采用太阳能技术的最初投资所需的时间会缩短。 电源逆变器是太阳能发电系统的关键电子组件。在商业应用中,这些组件连接光伏(PV)面板、储存电能的电池以及本地电力分配系统或公用事业电网。一个典型的太阳能逆变器,它把来自光伏阵列输出的极低的直流电压转换成电池直流电压、交流线路电压和配电网电压等若干种电压。 在一个典型的太阳能采集系统中,多个太阳能板并联到一个逆变器,该逆变器将来自多个光伏电池的可变直流输出转换成干净的50Hz或60Hz正弦波逆变电源。 此外,还应该指出的是,微控制器(MCU)模块TMS320C2000或MSP430通常包含诸如脉宽调制(PWM)模块和A/D转换器等关键的片上外设。 设计的主要目标是尽可能提高转换效率。这是一个复杂且需反复的过程,它涉及最大功率点跟踪算法(MPPT)以及执行相关算法的实时控制器。 最大化电源转换效率 未采用MPPT算法的逆变器简单地将光伏模块与电池直接连接起来,迫使光伏模块工作在电池电压。几乎无一例外的是,电池电压不是采集最多可用太阳能的理想值。 说明了典型的75W光伏模块在25℃电池温度下的传统电流/电压特性。虚线表示的是电压(PV VOLTS)与功率(PV WATTS)之比。 实线表示的是电压与电流(PV AMPS)之比。如图2所示,在12V时,输出功率大约为53W。换句话说,通过将光伏模块强制工作12V,输出功率被限制在约53W。 但采用MPPT算法后,情况发生了根本变化。在本例中,模块能实现最大输出功率的电压是17V。因此,MPPT算法的职责是使模块工作在17V,这样一来,无论电池电压是多少,都能从模块获取全部75W的功率。 高效DC/DC电源转换器将控制器输入端的17V电压转换为输出端的电池电压。由于DC/DC转换器将电压从17V降至12V,本例中,支持MPPT功能的系统内电池充电电流是:(VMODULE/VBATTERY)×IMODULE,或(17V/12V)×4.45A =6.30A。 假设DC/DC转换器的转换效率是100%,则充电电流将增加1.85A(或42%)。 虽然本例假设逆变器处理的是来自单个太阳能面板的能量,但传统系统通常是一个逆变器连接多个面板。取决于应用的不同,这种拓扑既有优点又有缺点。 MPPT算法 主要有三种类型的MPPT算法:扰动-观察法、电导增量法和恒定电压法。前两种方法通常称为“爬山”法,因为它们基于如下事实:在MPP的左侧,曲线呈上升趋势(dP/dV>0),而在MPP右侧,曲线下降(dP/dV <0)。 扰动-观察(P&O)法是最常用的。该算法按给定方向扰动工作电压并采样dP/dV。如果dP/dV为正,算法就“明白”它刚才是在朝着MPP调整电压。然后,它将一直朝这个方向调整电压,直到dP/dV变负。 P&O算法很容易实现,但在稳态运行中,它们有时会在MPP附近产生振荡。而且它们的响应速度也慢,甚至在迅速变化的气候条件下还有可能把方向搞反。 电导增量(INC)法使用光伏阵列的电导增量dI/dV来计算dP/dV的正负。INC能比P&O更准确地跟踪迅速变化的光辐照状况。但与 P&O一样,它也可能产生振荡并被迅速变化的大气条件所“蒙骗”。其另一个缺点是,增加的复杂性会延长计算时间并降低采样频率。 第三种方法“恒压法”则基于如下事实:一般来说,VMPP/VOC≈0.76。该方法的问题来源于它需要瞬间把光伏阵列的电流调为0以测量阵列的开路电压。然后,再将阵列的工作电压设置为该测定值的76%。但在阵列断开期间,可用能量被浪费掉了。人们还发现,虽然开路电压的76%是个很好的近似值,但也并非总是与MPP一致。 由于没有一个MPPT算法可以成功地满足所有常见的使用环境要求,许多设计工程师会让系统先*估环境条件再选择最适合当时环境条件的算法。事实上,有许多MPPT算法可用,太阳能面板制造商提供他们自己算法的情况也屡见不鲜。 对廉价控制器来说,除了MCU本份的正常控制功能外,执行MPPT算法绝非易事,该算法需要这些控制器具有高超的计算能力。诸如德州仪器C2000平台系列的先进32位实时微控制器就适合于各种太阳能应用。 电源逆变 使用单个逆变器有许多好处,其中最突出的是简单和低成本。采用MPPT算法和其它技术提高了单逆变器系统的效率,但这只是在一定程度上。根据应用的不同,单个逆变器拓扑的缺点会很明显。最突出的是可靠性问题:只要这个逆变器发生故障,那么在该逆变器被修好或更换前,所有面板产生的能量都浪费掉了。 即使逆变器工作正常,单逆变器拓扑也可能对系统效率产生负面影响。在大多数情况下,为达到最高效率,每个太阳能电池板都有不同的控制要求。决定各面板效率的因素有:面板内所含光伏电池组件的制造差异、不同的环境温度、阴影和方位造成的不同光照强度(接收到的太阳原始能量)。 与整个系统使用一个逆变器相比,为系统内每个太阳能电池板都配备一个微型逆变器会再次提升整个系统的转换效率。微型逆变器拓扑的主要好处是,即便其中一个逆变器出现故障,能量转换仍能进行。 采用微型逆变器的其它好处包括能够利用高分辨率PWM调整每个太阳能板的转换参数。由于云朵、阴影和背阴会改变每个面板的输出,为每个面板配备独有的微型逆变器就允许系统适应不断变化的负载情况。这为各面板及整个系统都提供了最佳转换效率。