- 您当前的位置:
- 首页>
- 产品中心 >多通道直流电子负载 >可编程直流电子负载仪_负载-深圳市源仪电子有限公司
更多详细信息欢迎来电咨询。多通道直流电子负载的使用环境以及应用案例.多通道直流电子负载具有对内(指电子负载本身)和对外(指被测试的电源产品)保护功能,保证负载的可靠性,常用于电源和电池产品的老化和充放电测试!因此多通道直流电子负载对使用环境有严格的要求。在使用过程中请注意以下几点:多通道直流电子负载因是模组化设计,客户选购的电子负载有可能有负载插槽空置未使用,为了安全,避免产生空气流,出厂时负载生产厂家会把空的负载插槽用挡板安装上!
如果您想咨询负载更多信息,请致电小姐:18123957973;珍惜与每个对多通道直流电子负载有需求的企业、个人 能有进一步的交流机会,欢迎各大企业、个人光临公司本部,深圳市源仪电子有限公司详细地址:大浪街道科伦特低碳产业园C栋4层402室。
此时负载的功率是所有并联负载模组功率的总和!此并联功能适合大功率单路输出的测试;负载控制外框内置风扇控制电路,随电子负载拉载功率的变化调节风扇转速!由于风扇并不是长期处于高速运转状态,从而可以降低风扇噪音,提高了风扇的寿命;多通道直流电子负载主/从界面的设计,可同步执行多组电子负载模组拉载的应用;每个负载模组都具有自身保护机制,包含过电压(OVP)保护、过电流(OCP)保护、过功率(OPP)保护、过温度(OTP)保护和反向(REV)保护;10、多通道直流电子负载在开机测试前会自我检测,检测内容包括出厂设置的交流输入电压是否正确,输入电源接线是否正确,负载模组安装是否正确以及可使用的负载模组数量、负载的软件版本等;1负载控制外框有GPIB通讯端口和RS232串口,可进行远程编辑控制!
因此用户在实际使用时,请不要拆卸挡板!多通道直流电子负载使用的温度环境一般是0度到40度,而且必须在负载顶部要有足够的空间,以及负载后面至少留3厘米的空间,保证有充足的空气流动!若是负载被堆叠使用,请使用脚垫来增高保留缝隙,以便于空气流通!多通道直流电子负载有115V/230V输入电压(按照仪器背后的标记)的选择。此标记选择表示负责只能够接受所选择的电压!电子负载出厂电压设置默认是230V!当输入电压被改变时,需要改变输入电源插座里的保险丝。
成都可编程交流电源供应器定做_可编辑波形的交流电子测量仪器图片-深圳市源仪电子有限公司
多通道直流电子负载模组化的设计方式,可以让不同功率的负载模组,以任意顺序插入同一负载控制外框,也就可以组成多种不同功率的多通道直流电子负载.如此简单多变的设计,可以满足各种电源产品的测试要求!值得注意的是,虽然负载控制外框和负载模组都有独立的操作按键和显示面板,但是二者必须配套使用,不能分开,而且必须是同一生产厂家的电子负载!深圳源仪电子的多通道直流电子负载的型号有:负载控制外框分为双负载控制外框M02,四负载控制外框M04;电子负载模组有L200双通道电子负载模组20A/80V/100W*2,L300电子负载模组60A/80V/300W,L500电子负载模组10A/500V/300W,L600电子负载模组120A/80V/600W,L700双通道电子负载模组40A/80V/250W+5A/80V/30W,L800电子负载模组20A/500V/600W。
多通道直流电子负载一次可同时测试2个及以上的电源产品。以下主要介绍多通道直流电子负载的外观结构。多通道直流电子负载的控制外框一般有一个、两个或四个可以插放负载模组的插槽。根据负载模组的功率不同,每个负载模组占用一到两个插槽。一个四通道的负载控制框(有四个插槽)可以装载成高达1200W的电子负载!另外一个单独的负载模组可以有1个或2个通道!也就是说当一个四通道的负载控制框里插放4个两通道的负载模组,便可组合为一套8通道的电子负载!
可编程直流电子负载仪
多通道直流电子负载有很强的测试功能,广泛应用于各种电源、LED驱动、电池、充电器、适配器等领域!如此受欢迎,多通道直流电子负载有哪些功能特点呢?多通道直流电子负载模组化设计,不同功率的负载模组可自由组合,同一负载控制外框可达8个通道,适合多组输出开关式电源供应器的测试;多通道直流电子负载可以在设定的模式下显示电压、电流,可以代替数字电压表使用;每个负载模组采取隔离与地浮接方式,避免造成短路回路;负载面板具有储存记忆功能,可设定高达100组测试参数及状态的储存,便于日后使用;多通道直流电子负载有三种工作模式:定电流(CC)、定电压(CV)和定电阻(CR);多通道直流电子负载在设定为定电流(CC)模式或者定电阻(CR)模式时,允许多个负载模组并联使用。
深圳市源仪电子有限公司在其他专用仪器仪表这个行业中,是一家屈指可数的好公司。其主营的产品——多通道直流电子负载,更是在业界中受到广大客户的喜爱。
随着微处理器工作电压的下降,模块电源输出电压亦从以前的5V降到了现在的3.3V甚至1.8V,业界预测,电源输出电压还将降到1.0V以下。与此同时,集成电路所需的电流增加,要求电源提供较大的负载输出能力。对于1V/100A的模块电源,有效负载相当于0.01,传统技术难以胜任如此高难度的设计要求。在10m负载的情况下,通往负载路径上的每m电阻都会使效率下降10,印制电路板的导线电阻、电感器的串联电阻、MOSFET的导通电阻及 MOSFET的管芯接线等对效率都有影响。